
M A R I A N N E  E H R E N B E R G  703 

proach of the (xyz) and (½-x,f ,½ + z) molecules. It is 
not surprising that there should be no approximate 
mirror symmetry of the thermal vibration of the atoms 
in the molecule, because the intermolecular bonding 
is far from mirror-symmetrical (Fig. 2). 

I wish to thank Prof. Dame Kathleen Lonsdale, 
F. R.S., for suggesting the problem and for continued 
advice. This work was part of a research project sup- 

ported by the Department of Scientific and Industrial 
Research. 
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After a short historical review, a description of the invariant cubic lattice complexes according to 
C. Hermann is given. Besides the Bravais lattices only seven cubic lattice complexes and their splitting 
products into subgroups are needed. The description of variant cubic complexes, with the aid of co- 
ordination polyhedm and invariant complexes, is given for space group Pm3m. A crystal-structure 
type is symbolized by a list of lattice complexes, each of which is occupied by a set of equivalent 
atoms or coordination polyhedra. 

Introduction 

Attempts have been made in the past to develop a 
satisfactory and comprehensive nomenclature of struct- 
ure types. 

In the Strukturberichte (1931-1943) P. P. Ewald and 
C. Hermann proposed a classification based on chemi- 
cal composition. The symbol of a structure type con- 
sists of a capital letter followed by a number; it is not 
self-explanatory, and the authors considered this nom- 
enclature to be only a preliminary solution. Later 
Structure Reports (from 1940 on) reported the results 
of structure determinations without any reference to 
structural types. 

Laves (1930) published a nomenclature which is 
especially appropriate for AmBn compositions but 
can also be expanded to AmBnCp compositions. The 
concept of 'connexion' is emphasized. Connexions in 
one, two, or three dimensions are symbolized by 
/(island), C(chain), N(net), or L(lattice). Besides these 
'homogeneous' connexions (between equivalent atoms), 
'heterogeneous' connexions (between dissimilar atoms) 
are also considered and are represented by small letters. 
In addition, coordination numbers and distances are 
also specified. 

In six papers Wells (1954a-1956) discussed 'the geo- 
metrical basis of crystal chemistry', using the examples 
of regular polyhedra and n-connected nets. Wells's 
n-connected nets are special cases of lattice complexes. 

Frank & Kasper (1958, 1959) described highly co- 
ordinated intermetallic compounds by means of 'tri- 
angulated coordination shells'. They have shown that 
these coordination shells have a number of represent- 
atives, but the triangulated coordination shells are not 
the only coordination polyhedra that are known in 
structures. 

In 1957 a report of the Nomenclature Committee 
of the ASTM proposed a nomenclature for alloy pha- 
ses. The symbols suggested consist of three parts; the 
first one gives the number of atoms in the cell, the last 
one designates the Bravais lattice by a new letter, and 
the middle part is a small letter, which distinguishes 
between different structure types that would otherwise 
have the same symbol; e.g. diamond-8aF, NaC1-8bF, 
ZnS(Sph)-8cF. 

The first edition of the International Tables (Interna- 
tionale Tabellen zur Bestimmung yon Kristallstrukturen, 
1935) included a good treatment of lattice complexes. 
C. Hermann redefined the concept, which had been 
introduced by P. Niggli. Each space-group description 
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included the list of all the lattice complexes it contains. 
A lattice complex was designated by the symbol of the 
space-group of highest symmetry in which it occurs, 
followed by the Wyckoff letter of the position by which 
it is represented. Example: Pm3m(a). 

Hermann (1960) and Menzer (1960) published nom- 
enclatures in which symbols are given to the few 
invariant lattice complexes and are modified for lattice 
complexes with degrees of freeedom. 

In the present paper Hermann's symbolism will be 
used in a somewhat modified form, which was agreed 
on at an informal meeting of crystallographers held 
at Kiel, February 17-29, 1964 (Donnay, Hellner & 
Niggli, 1965). 

Lattice complexes 

A lattice complex is defined as an arrangement of equi- 
valent points (or equipoints) that are related by space- 
group symmetry operations, including lattice translat- 
ions. One and the same lattice complex may occupy 
any one of several possible positions, in one or more 
space groups. The coordinates of the equivalent points 
for the various positions are tabulated in International 
Tables for X-Ray Crystallography. Besides invariant 
complexes there exist mono-, di-, and trivariant lattice 
complexes. 

Niggli (1919, 1928, 1941) pointed out the importance 
of lattice complexes for the systematic description of 
crystal structures. He was convinced of the importance 
of lattice complexes not only for the description of 
structure types, but also as a guide to structure deter- 
mination. Niggli failed to derive a simple symbolism 
for lattice complexes. He did not study the lattice com- 
plexes of the cubic system in detail. He considered as 
different those lattice complexes that can be represented 
by the same set of equivalent points with degrees of 
freedom, but have different values of the parameters. 

Hermann, on the other hand, uses only one lattice- 
complex symbol for a set of equipoints in the whole 
parameter range in the asymmetric unit. Moreover, he 
considers two lattice complexes to be identical if one 
of them can be brought to coincidence with the other 
by a rotation. According to a proposal made by Don- 
nay, Hellner & Niggli (1965), one and the same lattice 
complex may occur in both enantiomorphic represent- 
ations. 

An application of lattice complexes to the descrip- 
tion of structure types becomes possible if Hermann's 
nomenclature be modified so as to take the metrical 
properties of lattice complexes into consideration. The 
following extensions are necessary: 

(i) For invariant lattice complexes, the Hermann 
symbols will be used in a slightly revised form. To 
combine two or more complexes, it is important to 
know their positions with respect to the origin. 

Example: In F~3m the F complex may occur in four 
representations, corresponding to the following origins: 
4(a)000, 4 ( b ) ~ ,  4(c)¼~¼, and 4(d)¼t¼. We distinguish 
between them by using primes, as F, F', F", F'",  or 

in a more explicit way, by means of superscripts, as 
F, F 444, F zzz, F666 where the three digits in superscript 
express eights of the cell edge. 

In Table 1 all invariant cubic lattice complexes and 
their different representations are listed. Note that 
P2-- Pabc stands for a P complex with each of the three 
cell edges a, b, c halved, so that P2 contains eight equi- 
points. We say that in P2 the complex P appears in the 
second order. 

(ii) For complexes with degrees of freedom, one has 
to know the geometrical changes that take place when 
the parameters are allowed to range in the asymmetric 
unit. 

Example: In Pm3m consider the sixfold position 
6(e): x00, 200 ~ .  Hermann's symbol for the correspond- 
ing complex is P6x, in which P stands for the point 
with the highest point symmetry, obtained for x=0.0;  
6 is the multiplicity (or splitting number of the invari- 
ant complex P) when the parameter becomes larger 
than zero; x indicates that there is only one degree of 
freedom in the direction [100]. 

For the metrical description, however, this inform- 
ation is not sufficient. It is necessary to know that the 
complex P6x forms an octahedron around P and a 
dumbbell around J ' .  In the parameter range 0 < x <  
0.293 the shortest distances in the P6x complex lie in 
the octahedron (abbreviation 6o), therefore we describe 
this part as P(6o). In the parameter range 0.293 < x <  
0.5 the complex P6x has its shortest distance in the 
dumbbell around J ' ,  which we describe (see Donnay, 
Hellner & Niggli (1964) as J'(2l). For x=0.293 the dis- 
tances in the coordination polyhedra (60) and (2l) be- 
come equal and P 6x forms a sphere packing. An example 
of this sphere packing is found in CAB6, where the B 
atoms occupy P6x with x=0.29. Ca, located in P ' ,  is 
surrounded by 24 B atoms, which form a cubo-octa- 
hedron described as P' (24co). 

(iii) In crystal systems of low symmetry, the geomet- 
rical configuration of lattice complexes will vary with 
the axial ratios and the interaxialangles. 

Example: Hermann proposed to add a small letter 
in front of the complex symbol to designate the crystal 
system; in English we propose to use a, m, o, t, h, r, c 
for anorthic (=triclinic), monoclinic, orthorhombic, 
tetragonal, hexagonal, rhombohedral, and cubic. For 
example the D complex in Fddd is written oD. 

For a metrical description, however, one has to 
know the axial ratios in addition; with a:b:c~ 1:1:1 
the geometrical configuration of the D complex with 
its coordination number, distance, etc. will remain; 
with a: b: c = 1 : 1/3: 21/3 the same complex forms close- 
packed hexagonal nets perpendicular to c, which 
follow in a diamond sequence, with coordination 
number 10; in this case one may propose (d)L for 
the geometrical description, where L stands for a 
close-packed hexagonal layer and (d) for the diamond 
sequence as a four-layer type. The ~-Pu structure 
type is an example of this complex (Zachariasen & 
Ellinger, 1955); Laves & Wallbaum (1939) found Si2Ti 
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T a b l e  1. The invariant cubic lattice complexes and their representations 

Lattice Coordinates 
complex of equipoints 

P 000 

I (000, ½3½) + 000 

F (000, ~-i0 ---) + 000 

J* (ooo, ½½½) + ~ o  

Y i i 0  -" 

D (000, ½½0 ~ )  + 000, ¼-~;~, 

W* (000, 22~1~a +-t0x4 2,¼0½ "-- 

w ¼%, ¼o½ --, 

(ooo, 3½o ~ )  + ~ ,  ~ 

75 Y** (ooo, ~ ½ ) + ~ L  ~-8} 
~--8" ~" 

+ Y* (o00, ~½)  + k~-L : ~ ~ --- -US-g 

+Y ~ } ,  ~ 3  -g~-8-, 

s *  (ooo, ½½½) + ~}o¼, ¼ok, 
-~o+,-~o3 --- 

s (ooo, ½3½) + ~o¼, ¼ok .-. 

v* (ooo, ~ 3 )  + ~o¼, ~o¼, 
-~o¼, ~o3 --- 

+ v (ooo, ½~)  + ~o¼, i}o¼ --- 

Examples of possible 
space groups 

Point 
Position symmetry 

Pm3m l(a) m3m 
Pm3m l(b) m3m 
Fm3c 8(b) m3 
Ia3 8(a) 
Fm3c 8(a) 432 
la3 8(b) 
Fm3m 8(c) ~3m 
Im3m 8(c) 3m 

lm3m 2(a) m3m 
Fd3c 16(a) 23 
la3d 16(a) 

Fm3m 4(a) m3m 
Pa3 4(a) 
Fm3m 4(b) m3m 
ea3 4(b) 
FS43m 4(c) 743m 
Pn3m 4(b) 3m 
F743m 4(d) 743m 
Pn3m 4(c) ~m 
Fd3c 32(b) 32 

Fd3c 32(c) 3 

Im3m 6(b) 4 /mmm 
Fd3¢ 48(d) 2[ 

Pm3m 3@) 4/mmm 
Pm3m 3(d) 4 /mmm 
Fm3e 24(d) 4/m 
Fm3m 24(d) m m m  
Fm3c 24(c) ~m2 

Fd3m 8(a) ~3m 
Fd3m 8(b) 2~3m 

Im3m 12(d) 7~m2 

Pm3n 6(c) ~m2 
Pm3n 6(d) 2~m2 

Fd3m 16@) 3m 
Fd3m 16(d) 3m 

Ia3d 16(b) 32 

Representation of lattice complex 

P 
P '  = 33½ P = 444/8 P = p444 

(000, 3½-0 ~ ) +  000, ½~} or 
P2 (000, ½½3) -t-" 000, ½30 

P2" ----- ¼¼¼ P2 = 222/8 P2 = P2222 

1 
(000, {-~0 ---)+ 000, ½½}, ¼-k¼, 3¼¼ or 

I2 (000, ½½{) + 000, ½30, ¼¼¼, ~ ¼  --~ 

F 

F '  = 3~r F =  444/8 F =  F 444 

F "  = kk¼ F =  222/8 F =  F 222 

F " '  = ¼¼¼ F =  666/8 F =  F 666 

F2"=F2111 (000, 330 - - ) + ~ ,  13. ~ ,  31~ 
555 577 757 775 
W~" -8-8~' "8~--8-' ~--8- 

F2'" = ¼~,]: F2 ' ' =  333/8/:2333 

J*  
J2* (000, ½½0 -"~) --[- ¼¼0, ¼¼3, 00¼, 00¼ 

J 
J ' = ½ } 3  J=444/8  j-_j444 

J2 (ooo, ~ o  . - . )+ ~ o ,  ~3- - -  

J2' = ~ - ~  J 2 = 2 2 2 / 8  3"2=,/2222 

D 
D' = 333 D = 444/8 D = D 444 

W* 

W 
W' = 3½½ W =  444/8 W =  W 444 

T 
T '  = 3{-} T =  444/8 T =  T 444 

y**  

+ y *  

- Y * = + Y *  . i 

+ y  
+ Y '= '~-}  +Y=444/8 +y=+y444  
- Y = + Y .  i 
- Y' = ~ -  - Y= 444/8 - Y= - y444 

S* 

S 
" S = S .  i 

V* 

+V 
- V = + V .  i 

14132 8(a) 32 
14132 8(b) 32 

P4332 4(a) 32 
P4332 4(b) 32 
P4132 4(b) 32 
P4132 4(a) 32 

Ia3d 24(d) 71 

I~3d 12(a) 
I43d 12(b) 

Ia3d 24(c) 222 

14132 12(c) 222 
14132 12(d) 222 

Multipl i -  
city 

1 
1 
8 

2 
16 

4 

4 

4 

4 

32 

32 

6 
48 

3 
3 

24 

24 

8 
8 

12 

6 
6 

16 
16 

16 

8 
8 

4 
4 
4 
4 

24 

12 
12 

24 

12 
12 
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to be a superstructure of this type. In Fmmm one has 
the same properties for the F complex with the axial 
ratios a:b:c=1:l/3:l / '3,  which one can describe as 
( f ) L  for a two-layer type with the coordination number 
10. The MoSia type forms a superstructure of this 
complex. (Note that a three-layer complex (q)L exists; 
q is derived from the high-quartz structure, where the 
Si atoms occupy this complex in P6z 22; the ideal type 
(q)L is realized with the axial ratio a:c= 1 : za-[,'3. CrSi2 
can be considered as a superstructure of this type). 

In the following paragraphs we will deal only with 
the cubic lattice complexes, some of their relations and 
combinations, and their application to the nomencla- 
ture of cubic structure types. 

The invariant cubic lattice complexes 

All invariant cubic lattice complexes and their repre- 
sentations are listed in Table 1. In the first column the 
revised Hermann symbols are tabulated. The second 
column gives the coordinates of the equipoints in the 
normal (unshifted) representation of the complex. In 
the third column the first line for each complex gives 
the notation used by Hermann in the first edition of the 
International Tables; example: Pm3m l(a) was used to 
designate the P complex in its normal orientation. The 
third column also contains examples of other space 
groups, where the complex appears either in the same 
or in a higher order. For each example the fourth col- 
umn gives the corresponding point symmetry, while 
the fifth column gives equipoint coordinates for non- 
normal (e. g. shifted) representations. In the last column 
the multiplicity of the complex, that is the number of 
equipoints in the cell, is noted. Niggli (1919) introduced 
the word Punktner (Hermann changed it to Punkter); 
in English one may use pointer. 

Examples: P is a 1-pointer, I is a 2-pointer, Pz is an 
8-pointer. 

In Figs. 1 to 3, each invariant cubic complex is 
drawn in its unit cell; the heights of the points are given 
in eights of cell edge. In addition relations between the 
complexes are shown, which explain their derivation 
with the aid of subgroups and supergroups. 

In Pm3m (Fig. 1) there exist two 1-pointers, P and 
P' ,  and two 3-pointers, J and J ' .  Several structure types 
can be described in terms of these complexes. 

Examples: 

CsC1 type 
AuCu3 type (ordered) 
ReO3 type 
CaTiO3 type 
U4S 3 type 

The structural formula in the 
the distribution of the atoms 

CslCll PP'  
AulCU3 PJ 
RelO3 P ' J  
CalTilO3 PP'J  
U1U3S 3 PJJ'  

second column explains 
among the lattice com- 

plexes, which are listed in the third column. 
The complexes P and J, which are distinct in Pm3m, 

unite in the supergroup Fm3m to form the F complex, 

P + J = F  [Fig. l(a)]. Likewise P ' + J ' = F ' .  In addition 
Fm3m contains the 8-pointer P2 and the 24-pointer 
J2 (which can be derived from P2m3m, as Fm3m is one 
of its hemisymmetric* subgroups). 

Examples: 

Cu type Cu4 F 
muCu3 type (disordered) {mul/4Cu3/4} 4 F 
NaCI type Na4C14 FF' 
CaF2 type Ca4F8 FP 2 
BiF3 type Bi4F4F8 FF'P;  

Note the braces enclosing the fractional atoms that 
together occupy each equipoint of the F complex in 
a statistical way. 

In the hemisymmetric subgroup F743m of Fm3m, the 
8-pointer P ;  splits into two representations of the F 

* The use of the term merosymmetry rather than merohedry 
was advocated by Rogers (1938) in the case of point-group 
symmetry. In space groups, it is impossible to speak of mero- 
hedry, since no planes are involved. 

° I ' 1  T '-°1 
I - - 4  0 4 0 

p j F 

{b )  

o o 

! 

o 

+ 

4--0.4--4 

OL 0 04 

!_o.,-] 
J .  

I 2.6 2.6 2 6 

{c) > 

2"6 2"6 6 2 

P~' F'" 

F ~-26-~7 I 26 1 
0 ~ 4 

0 ~ 4 
1~_~6_~1 I 26 

W ,  W: 

iii-:i-ll 
j,_ ol,_ot 

6 2 

2 6 

F eBe 

,dT]  
L,±,J 

w 

0~--04--0.4 0 4--0 

4 4 0 ~ d" l e )  0 04 0 ± > 

O W - - 0 4 - -  0:4 0 4 - -  0 

6 

] °- -  T 6 2 

0 ~ 0 

4 0 4 

D D' 

3.71 I 3 5 7 7 I 3 1.5 3.7 I,5 

3.7 1.5 3.7 1.51 3 I 7 5 Jr 5 3 ! 
( f )  1.5 3.7 15 3.7 > 5 7 I 3 3 5 ? 

3.7 1"5 3.7 15 7 5 3 l .I ? 5 

F2" T T" 
Fig. 1. Relations between the cubic complexes P, I, F, J, J*, W, 

W*, D and T (the numbers indicate the heights of the points 
in eighths). 
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(o )  

1.3;13 1.311.31 : : l I 3!1.311.3:1. I 
57:5"7 57,57 I 5 ,  7, 3 [_57, 7,5 ,57 1 
"D':D-',D-:-Y/I : ' ' ID-fY-',--Y?D-I 

5 7  ' , 5 7  : 5 7 t  5 7  7 , 3 '. I ' 5 j 5__~5__7_L5_7_.._7 I 

- D - :  ; . } :  } 3 - ' } . Y l  " . . . .  " . . . . . . . . . .  + 5 7 ' , 5 7 ' , 5 7 , 5 7  3 ', 7 ', 5 i I 1.57 , 5 / I .  ;1.3',, 7,5711.3: .31 

5"7~5"7 E7i5"7 I 5 i l j 3 i 7 | 7 1 5 7 1 5 7 1 5  I 

P /  = Y * *  + (P~" - Y * * ) x x  

(b) 

13 13 _ ~ ; ¢  ,, "5i7""~_ r - -  1;5 ; 3;7.-.-.- 3 i......-3;7 ; 1.5 ' - 1  
2.6 I 2;6 , 2 '6  2 ' ' I " ' 4 - ' ' 0 " "  . 4 _ . . 0 _ .  t Fo,-,o,-:-o,--o,t ' ' '  : '  
2"6 13 216 l i  3 2"6 6 " 2 ' ' ' ' 

z .6  , 216 , 2.6 2 ,, 6 , 2 ~ : 2 i Eo.~-',-o.,..o.,-',-o., ~ ~-,-.-o-~-,-'.o-~ F-o- " -,- " .o-. -,. ~ 
2.6 ' 2~6 ' 2"6 

I : _ j i 3  I t'.3 "1 
57 57 

6 ' 2 ' 6 2 , 6 ' 2 
b___l'. 5 ; 3'.7......J I......_3:7 , l:5.-..-J 

V, + 5 -  

7 - - !  - - - ~ 3  F f ~ -  T--I I-- ~ - Z  5--I - - '  ol : . O . - , . . . c - . _ r . 4 . .  I ~ . _ . ' . 4 . _ ' . 0 . _ ' . . .  I _L . . . . .  '. ]. . . . . .  O._r.4.. r _..J 
~ - - -  - - - I  2 , , , 2 6 1 ' 1 6 1 2 , , , , 

I - - - - 7 " - ' - ,  . - - - 5  . . . .  I 3 . . . .  3 . . . ;  p___?.____. .~ ,  . . . .  

---:--o.-:--<--:---- I--4--'----' .... '--o--I I----'--<--'--o--'----I -o--,----. ..... <- 
/ , 2, , 6 ', :' :' 6 2 ', ',, ', 2 : 6, ! 
t ~  , 3 - - - I  t _ _ ~  , 7 - - J  t . _ _ ~  , . ~ . _ J  ~ 3  , ~ - - ~  

-v "v -s ÷s 
Fig. 2. Relations between the cubic lattice complexes P4', Y**, W2', V*, S*, -V, + V, -S, and +S (the numbers indicate the heights 

of the points in eighths). 

I 3 

3 1 3 I 

5 7 5 7 

7 5 

1 3 

.+ y .  

3 I 

I 3 

7 

I 5 7 3 

7 3 I 5 

3 7 5 1 

5 1 3 7 

I 

7 
3 

7 

7 

5 ? 

3 1 

I 3 

? 5 

7 

5 

I 

3 3 

7 

I I 3 3 5 
* y  ÷ y '  - y  

- y ~  

I 3 

7 5 

5 
7 

3 

I I 

5 
7 

-y ,  

Fig. 3. Relations between the cubic lattice complex Y** and its splitting products (the numbers indicate the heights of the 
points in eighths). 
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complex" P~ = F "  + F ' "  [Fig. 1 (c)]. It follows that we 
can describe the sphalerite type in four different ways: 

Sphalerite type ZnS Zn4S4 FF" or FF'" 
or F'F" or F ' F ' " .  

Likewise the NaC1 type can be described as FF' or as 
F " F " ' .  

In Im3m, a supergroup of Pm3m, the complexes PP' 
and JJ' unite in the following way: P + P ' = I  and J +  
J ' = J *  (pronounced 'J star'). I is a 2-pointer and J* 
a 6-pointer; together they form an 8-pointer, P2=I+ 
J* [Fig. l(b)]. Two other invariant complexes, P~ and 
W* exist in Im3m with point symmetries 3m and 74m2, 
respectively. Complex W* is a 12-pointer. In the sub- 
group Pn3m, P'2 splits into F"  and F ' "  [Fig. l(c)], 
and in Pm3n, W* splits into W and W' [Fig. l(d)]. 

Examples: 

Pt304 type in Im3m Pt608 J*P'2 
Mg3P2 type in Pn3m Mg6P4 J*F" 
Cu20 type in Pn3m O2Cu4 IF" 
fl-W type in Pm3n W2W6 1W 
NaPt304 type in Pm3n NazPt608 IWP'2 

While W*, like all the other complexes discussed above, 
is a three-dimensional network, W and W' consist of 
sets of mutually perpendicular linear chains, which do 
not intersect. The shortest interatomic distance occurs 
along the chains; a larger interatomic distance is need- 
ed to go from chain to chain. 

In Fd3m there exist D and T complexes; the two 
D representations together form an 12 (=  D + D ') com- 
plex [Fig. 1 (e)], whereas the two T representations form 
an F;+' ( =  T +  T') complex [Fig. l (f)] .  

Examples: 

Diamond type Cs D 
NaT1 type NasTls DD' 
Cristobalite type Si8016 DT 
MgCu2 type MgsCu16 DT' 
PtCu type Pt16Cu16 TT' 
Spinel type M g s A 1 1 6 0 3 2  DT'F'2"xxx 

In the spinel type the complex F~" has one degree of 
freedom in the direction of the body diagonal, as 
indicated by xxx; the value of x is close to 3, which 
justifies this way of describing it. 

Space group Ia3d, in which the four threefold axes 
do not intersect and, consequently, no cubic point 
symmetry occurs, is the last holosymmetric space group 
and has four invariant complexes. Three of them are 
new ones. Besides an 12 in 16(a), we find another 16- 
pointer designated Y** and two 24-pointers, which get 
the symbols S* and V*. The 16 equipoints of Y** consti- 
tute part of a theoretical P~ complex, which does not 
appear in space groups of the first order. The remaining 

• part of P4 is [ P 4 -  Y**], which in Ia3dcan occupy pos- 
ition 48(g) ~, x, ¼ - x ,  with x=~=0 .625 .  This splitting 
of the P4 is shown in Fig. 2(a). 

Examples: 

High-leucite type 
K[AISi206] K16{(All/35i2/3)O4/2}48 

Y**[P4-  Y**]xx('4ge) 
Analcime type 

Na[A1Si206]. HaO 

{H20}I6{(AI1/3Si2/3)O4/2}4s{Na16/24}24 
Y**[P4-  Y**]xx('4ge) V* 

Garnet type 
AlzCa3[SiO4]3 A116Caz4{SiO4}z4 IzV*S*('4s) 

Note that the Y** and the [ P 4 -  Y**] complexes are 
occupied by K and (A1, Si) in the high-leucite type, 
whereas in the analcime type the H/O and (A1, Si) fill 
these positions. In both structure types the O atoms 
form connected, distorted tetrahedra around the (A1, 
Si) atoms. The distorted and connected tetrahedra are 
symbolized by (4gc)t. The dot in front of the symbol 
indicates the presence of an atom inside the tetrahedron. 
In analcime the 16 Na atoms are located statistically 
on the 24-pointer V*. 

Note also that S * +  V*= W2 [Fig. 2(b)]. Both posit- 
ions are occupied in the garnet structure, one by Si 
and the other by Ca. Adding 12, which is occupied 
by AI, we can consider the garnet structure a super- 
structure of the second order of the fl-W type, which 
has the symbol 1W. In addition, the O atoms form 
isolated tetrahedra around S*, designated by 4st in 
view of the point symmetry 7~ of S*, forming a sphere 
packing by itself. The splitting of V* and S* into 
+V, -V, and +S, -S, respectively, is shown in Fig. 2(b). 
Fig. 3 explains the splitting of Y**. 

The few examples given above should show that lat- 
tice complexes are useful not only for the study of 
space groups, but also as a basis for a nomenclature 
of structure types. 

Derivation of cubic invariant lattice complexes 

All space groups other than hexagonal can be derived 
as merosymmetric subgroups of Izm3m. The invariant 
cubic complexes, which we have described above, occur 
in various space groups. As example let us consider 
(Table 2) all the space groups that can be derived from 
I2m3m by keeping the same holohedral point group 
m3m and changing the translation group from 12 (16 
points per cell) to P2(8 points), F(4 points), I (2 points), 
and P (1 point). For all space groups the invariant 
complexes are listed, showing the splittings from one 
line to the next. In the third, fourth, and fifth row of 
Table 2, all ten space groups of the first order are listed, 
together with their lattice complexes. 

t 4s symbolizes a tetragonal distorted tetrahedron (tetragonal 
disphenoid) with the point symmetry 7L 

4g symbolizes a rhombical distorted tetrahedron (rhombic 
disphenoid) with the point symmetry 222. 

Subindex c indicates that the polyhedra are connected, hav- 
ing corners in common. 
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Pm3m can be derived as a hemisymmetric subgroup 
of Im3m and as a tetartosymmetric subgroup of Fm3m. 
In the first case, complexes I and J* split into PP' 
and JJ', whereas P~ and W* become the monovariant 
lattice complexes 8(g)xxx and 12(h)x½0, which are not 
listed. With x=¼ the latter become the configuration 
of P ;  and W*, respectively. In the second case (going 
from Fm3m to Pm3m), F and F'  split into PJ and 
P'J'  respectively; while P ;  and J2 acquire degrees of 
freedom: P;  in the same way as in the transition from 
Im3m to Pm3m, J2 becoming 12(i)Oxx and 12(j)½xx, 
two monovariant complexes which coalesce in Jz for 
X=¼. 

Consider now the other system-symorphic subgroups 
of lm3m, namely Pn3m, Pm3n, and Pn3n. The I com- 
plex remains I in all three. Besides, all the invariant 

complexes are the same in Pn3n as in Im3mt. In Pn3m, 
P;  splits into F "  and F ' " ,  while in Pm3n, W* splits 
into W and W'. Important structures crystallize in 
these two space groups. 

For the derivation of the F and I space groups in 
the holohedral point group (Table 2, row 2), we use 
Pzm3m, P2n3m, and Pzm3n, which are subgroups of 
Izm3m. With increasing order of the space groups, the 
order of the lattice complexes increase too. 

In the hemisymmetric transition from Pzm3m to 
Fm3m, the invariant complex P2 splits into F and F' ,  
P~ and J2 remain unchanged, while J~ becomes acom-  

1" In consequence we shall not find, in Pn3n, any structure 
type that occupies invariant or (and) monovariant complexes 
only. Only the trivariant complex 48(i)xyz is characteristic of 
the space group. 

Table 2. Space groups of the holohedral point group m3m derived from Izm3m and their invariant complexes 
Solid lines indicate hemisymmetry, dotted lines tetartosymmetry 

I 
Fm3m 

FF'Pz'J2 

I 
P2m3m 

P2P2"JzJ2" 

I I 
Fm3c 

P2P2"J2J2' 

12m3m 
I2J2" P4' Wz * 

III 
I I 

P2n3m P2m3n 
hJ2 * F£'F2"" W2* hJ2 * P4" IV2 W2" 

I 
Fd3m Fd3c 

DD'TT"  IzJ2*Fz"F2'" 

I I I 
Pm3m Pn3m Pm3n Pn3n 
P P ' J J  ' IJ * F "  F ' "  W* H 'P2"  WW" IJ * Pz" W* 

Im3m Ia3d 
I J 'P2" W* I2 Y**S* V* 

J 

Table 3. Coordination number N for different lattice complexes 
Each equipoint of a complex shown in the left column is surrounded by N equipoints of a complex given on the top row 

P P" J J" I J* P2" W* D D" T T" 

P 6 8 12 6 I 8 6 8 24 D 4 4 4 12 
P '  8 6 6 12 J* 2 4 8 4 D' 4 4 12 4 
J 4 2 8 4 P2" 2 6 6 6 T 2 6 6 6 
J" 2 4 4 8 W* 4 2 4 4 T'  6 2 6 6 

in Pm3m in Im3m in Fd3m 

Table 4. Examples of structure types and homeotypes 
Chemical Space 

composition group Structural formula 

Cu Fm3m Cu4 
CO2 Pa3 {C02}4 
NaCI Fm3m Na4CI4 
FeS2 Pa3 Fe4{$2}4 
Co(NH3)6TICI6 Pa3 {Co(NH3)6}4{T1C16}4 
CaF2 Fm3m CaaF8 
Zn(BrO3)2.6H20 Pa3 {Zn(H20)6}a{BrO3}8 
BiF3 Fm3m Bi4F4F8 
KAI(SO4)z. 12H20 Pa3 {K(HzO)6}4 {Al(H20)6}4{SO4}8 

Structure-type 
symbol 

F 
F('2/) 
FF" 
FF'(2l) 
F(.6o) F'(.6o) 
FPz" 
F(.6o) P2" xxx(.3y) 
FF'P2' 
F(.6o) F'(.6o) P2' xxx( .4 t )  

AC19-2 
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plex with one degree of freedom 24(e)x00. Many 
structures crystallize in this space group (see Table 4). 
In Fm3c, on the other hand, all invariant complexes of 
P2m3m remain unchanged, as do four monovariant 
complexes, which are not listed in Table 2. This fact 
explains why Fm3c is of minor importance in crystal 
chemistry. 

In the hemisymmetric transition from P2n3m to 
Fd3m, two important splittings take place: I2 = D + D' 
and F'2" = T+ T'. Important structures, such as diamond, 
NAT1, PtCu, cristobalite, MgCu2, and spinel crystallize 
in Fd3m, as shown above. In going from Pzm3m to 
Fd3c, the complexes 12, J:~, F2', and F~" remain un- 
changed. 

The two space groups Im3m and Ia3d are derived 
as tetartosymmetric subgroups from Pzm3m and 
Pzm3n, respectively. The Pz complex in Pzm3m splits 
into I and J* in Im3m, P'2 remains unchanged, Jz 
acquires one degree of freedom, and J ;  splits into W* 
and the monovariant complex 12(e)x00. During the 
tetartosymmetric reduction of Pzm3n to Ia3d, the Iz 
complex remains unchanged, J~ gets one degree of 
freedom as 48(f)x0¼, P4 splits into Y** and a 48-poin- 
ter 48(g)~, x, ¼-x; with x = 3, W2 can occur as the same 
48-pointer with x=¼, while W~ splits into two new 
invariant complexes S* and V*. 

The following rules hold true for a tetartosymmetric 
derivation of lattice complexes: 

(1) If the number of equipoints of the complex 
remains the same in the subgroup as it was in the 
original group, the point symmetry has to be reduced 
in a tetartosymmetric way. 

Example: Complex Iz in Pzm3n has point symmetry 
m3; in Ia3d it has point symmetry 3. 

(2) If the number n of equipoints in the original 
group splits into n/4+3n/4 in the tetartosymmetric 
subgroup, the point symmetry remains unchanged in 
the n/4-pointer, but its order is divided by 3 in the 
3n/4-pointer. 

Example" From Pzm3n to Ia3d, the 64-pointer P~ 
with point symmetry 32 splits into the 16-pointer Y** 
with point symmetry 32 and the 48-pointer [P4 -  Y**] 
with point symmetry 2, which necessarily has one 
degree of freedom. 

(3) If the number of equipoints is halved, the order 
of the point symmetry must also be halved. 

Example" From Pzm3n to Ia3d, the 48-pointer W~ 
with point symmetry 7~m2 (order 8) splits into the 
24-pointer S* with point symmetry 7~ (order 4) and the 
24-pointer V* with point symmetry 222 (order 4). 

Coordination number 

C. Hermann gave the self-coordination (German: Ei- 
genkoordination) of every invariant cubic complex, that 
is, the number of equipoints that surround any equi- 
point of the same complex: 12 for F, 8 for / ,  J, and S; 
6 for P, T, and Y; 4 for D, W*, J*, V, and S*; 3 for 

Y*. We give examples of the coordination number of 
an equipoint of a complex surrounded by equipoints 
of the same complex or of another complex (Table 3). 

Coordination polyhedra 

We will use the following symbols for coordination 
polyhedra needed in this paper" 

2l 

3y 

4t 
6o 
8c 
8r 
8l 

12co 

24co 
24oc 

24cod 

line segment collinear with the origin ('dumb- 
bell') 
trigon (equilateral triangle), not coplanar with 
the origin 
tetrahedron 
octahedron 
cube (hexahedron) 
tetragonal prism + pinacoid 
octagon coplanar with the origin 
cuboctahedron (cube+octahedron, all edges 
equal) 
truncated cube (cube truncated by octahedron) 
truncated octahedron (octahedron truncated by 
cube) 
rhombicuboctahedron (cube + octahedron + 
rhombdodecahedron) 

Metrical description of the lattice complexes 
in a space group 

Let us consider space group Pm3m. The first four pos- 
itions can be defined by invariant complexes, as fol- 
lows" 1 (a): 000 by P, 1 (b)" 2x-b} by P' ,  3(c): 2x-}0 ~ by J, 
3(d)" ½00--* by J ' .  

The next position is 6(e): + x 0 0 ~ ,  which is the 
normal representation of the monovariant complex 
P6x, discussed above with metrical description P(6o) 
J'(21) and a sphere packing (SP) at x = 0-293. The next 
set of equivalent points, 6(f): _+ xlX~:2 , has the same 
metrical properties as 6(e). The complex is P6x, but 
shifted by a_xx.222, this fact could be emphasized by chang- 
ing coordinates and writing ½+x'  instead of x. Pos- 
ition 8(g) is named complex P8xxx, which forms a cube 
around P or P ' ;  and the sphere packing P2 at x = 0.250. 
In position 12(h)" + x½0~, complex J4x does not reach 
the origin as the parameter ranges from 0 to 0.5; a 
square (4/) appears as coordination polyhedron and 
the sphere packing W* is found at x=0.250. In pos- 
itions 12(i)" +Oxx~, +Ox2~ and 12(j): +_½xx~, 
+ ½ x . ~ ,  complexes P12xx and P'12xx are related to 
each other like P6x and P'6x; the new coordination 
polyhedron is a cuboctahedron (12co) around P or P ' ;  
a sphere packing occurs at x = 0.293. 

The metrical representation for the divariant lattice 
complex P24yz in position 24(k) Oyz is given in the plane 
xyO in the asymmetric unit. The boundary lines of the 
two-dimensional asymmetric unit consist of represent- 
ations of monovariant lattice complexes, explained in 
the drawing. The triangular two-dimensional asym- 
metric unit is divided by dashed lines into three parts, 
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which are Niggli's symmetry regions (Symmetrie-Be- 
reiche) around the three invariant complexes P, J', and 
J. Sphere packing occurs at the point where the three 
symmetry regions meet, i.e. where the distances in the 
three different coordination polyhedra become equal; 
the parameters of this point are x=0.364,  y=0.186.  
The coordination polyhedra, truncated octahedron 
(24oc), tetragonal prism and pinacoid (Sr), and octagon 
(8/), surround the equipoints of P, J', and J, respect- 
ively. The properties of position 24(l)½yz are identical 
with those of position 24(k)Oyz, except for a shift of 

1 1  ½z~. This could be emphasized by changing coordin- 
ates and writing y=½+y';  z=½+z',  so that the pos- 
ition becomes 24(/)½, ½+y' ,  ½+z ' ;  this position does 
not appear on Fig. 4. The metrical representation for 
24(m)P24xxz is quite different. The coordination poly- 
hedra (8r) surround equipoints of J and J ' .  Two 
new polyhedra are around P (or P') ,  namely, the 
truncated cube (24¢0) and the rhombicuboctahedron 
(24cod). The parameters for sphere packing are x =  
0.146, z=0.354 and x=0.354,  z=0.146. 

l(a) P m3m 000 

lib) p "  

3(~) J 

m 3 m  !!! 
222 

S P A C E  G R O U P  

P m 3 m  

3(d) J '  

6{e) Pex 

eto P;x 

8(9) Paxxx 

t2(h) J,~x 

12(11 P12xx 

12U) ~12xx 

rnm 

4turn 

4 rn rn 

I 0 0  

xOO 

11 

3m xxx 

> x  
0.0 0.293 0.5 
' ~ ' 

p < p (60) ~ <-J~(21) --> J" 

0 . " ~  >x 0.207 0.5 
' ~ ' 

J < - - J  (20-  <--P'(so) " > p '  

0.0 > xxx 0.250 0.5 
i 

P <--P(sc)----> P 2 < - - P ' ( a c ) - - >  P" 

> x  
O.jO 0 i250 0i5 

~ ~ o J '< - -J 'u , )  ---> W < - -  Ju,) - ~  J 

> XX 
0 i 0 O. 293 0i5 

mm x Oxx P < P(12co) > ~ < - - J ( 4 o  >J 

> XX 
0;0 0.207 O :  

m~,  ~ , ,  j ' <  j ' . , ) - - . @ <  p'.2oo) >p' 

The metrical description of the trivariant lattice 
complex has not been attempted on Fig. 4. 

Homeotype structures 

12 (i) 

\ 

Any structure type can be described by listing the 
lattice complexes that are occupied by atoms. Table 4 
shows the simple types F, FF', FP; and FF'P 2 
for Cu, NaC1, CaF2, and BiF3, respectively; under each 
of these, one or two other structure types are listed, 
which have coordination polyhedra around the equi- 
points of the invariant complexes, whether the latter 
are occupied or not. These structure types are homeo- 
types of the simple types. 

In the C O  2 structure, the C atoms occupy an F com- 
plex. Around each C, two O atoms form a 'dumbbell '  
(2/), that is to say, they are collinear with the C atom 
and equidistant from it. We speak of a 'centered 
dumbbell '  and symbolize it (.2/). The dot inside the 
parenthesis indicates that an atom (here, C) occupies 
the midpoint of the coordination polyhedron (here, a 

6to) 

1 

12(h), > 

O0 
oo p 

l 
Q. 

>y 

% 

0293 ( ~  P(2,; 

• 1' . . . . . .  ¢ .... ' "  \ 

, J (oo 

o5 J" <--J'uo ---> W,  <-J u o - - ,  J 
0.0 025 0.5 ~, 

xx 

24(k) P24yz m Oyz 

O. 0 ~0" 207  0.5 
12 (j) , 0.5 j "  < - - j ' ( ¢ l )  > {SP) < p'a2co) > p'o.s 

¢ @~ ,"" p'(2~co) _, 
j ," ~ t% u - 

0 293 . . . . . .  "" .  , Q" 

| / ".. / _.o( ~ ) 0.207 

I l / P(2<co) ,." . ~ 

12(i). > 0.0 p < Pa2co) " 5 ~  - -J (~ / )  : J 0.0 
0.0 0293 0.5 

3- XX 

T T 
6 (e) 6(f) 

2~(m) P2~xxz mX xxz 

Fig. 4. Representation of the space group Pm3m including lattice complexes; the metrical description for mono- and divar- 
iant complexes is done with the aid of coordination polyhedra, which surround the invariant complexes. The special 
position for a sphere packing in each complex with degree of freedom is indicated by a circle labelled SP. (W-  w*). 

A C 19  - 2 *  



712 SYMBOLS FOR C R Y S T A L - S T R U C T U R E  TYPES AND H O M E O T Y P E S  

line segment). The C02 structure type is designated 
F(.2/); it is a homeotype of structure type F, in which 
Cu crystallizes. Likewise FeS2 and Co(NH3)6TlCI6 be- 
long to homeotypes of the NaC1 type, FF'. The F com- 
plex occurs in two representations, both of which are 
occupied by isolated atoms in NaC1. In FeS2 one of 
them is occupied by Fe atoms, the other by dumbbells 
formed by $2 molecules. Note that the midpoint of the 
dumbbell is not occupied by any atom, so that the 
symbol is F'(2/) and not F'(.21). In Co(NH3)6T1C16 
both Fand  F '  are occupied by 'centered octahedra' (.60). 

In the structure of Zn(BrO3)2.6H20, which belongs 
to a homeotype of FP'2 (CaF2 type), six H20 molecules 
form an octahedron around Zn, while three O atoms 
form a trigon (3y), which is not coplanar with Br, but 
together with Br makes a trigonal pyramid. The Br 
atom has one degree of freedom xxx ,  but the param- 
eter x=0.259 is only slightly different from the ideal 
x=0.250.  

Finally, the alum structure belongs to a homeotype 
of FF'P'~ (BiF3 type), with water octahedra around K 
and A1 in F and F' ,  and a tetrahedron around S in 
the P2 position, which is monovariant with x=0.310 
(instead of x=0.250).  

To the six rules of Laves & Wallbaum (1944) we 
may add the following: structures in which the same 
complexes, in the same representations, are occupied 
by discrete coordination polyhedra (centered or not) 
are homeotypes of the simpler structure in which the 
complexes are occupied by individual atoms. 

The nomenclature proposed in this paper is the 
result of the many discussions I had with C. Hermann 
over a period of several years. It is a natural outgrowth 
of his work on lattice complexes. In a way it can also 
be regarded as a continuation of the nomenclature of 
Laves, whose 'connection concept' is used, now ex- 
pressed in terms of lattice complexes and coordination 
polyhedra. 

I am greatly indebted to Professor F. Laves for the 
help and encouragement he gave me when I was first 
a student, then an assistant in his Institute. 

Professor J. D. H. Donnay was kind enough to 
revise my manuscript. 
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